Skip to main content

Investigations into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface properties causing delayed osteoblast growth

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

Osteoblast proliferation is sensitive to material surface properties. In this study, the proliferation of MC3T3 E1-S14 osteoblastic cells on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films with different surface characteristics was investigated with the aim of evaluating the cause of a lag in cell growth previously observed. The solvent-cast films were prepared using three different solvents/solvent mixtures which produced PHBV films with both a rough (at the air interface) and smooth (at the glass interface) surface. Investigation of the surface roughness by scanning electron and scanning probe microscopy revealed that the surfaces had features that were different in both average lateral size and average amplitude (R a 20–200 nm). Water contact angles showed that all surfaces were hydrophobic in nature ( A in the range 69–82°). The lateral distribution of surface crystallinity of the films was evaluated by use of micro-attenuated total reflectance Fourier transform infrared (ATR–FT-IR) by determining the surface crystallinity index (CI) which was found to differ between samples. MC3T3-E1-S14 osteoblasts were cultured on the six surfaces and proliferation was determined. After 2 days, cell proliferation on all surfaces was significantly less than on the control substrate; however, after 4 days cell proliferation was optimal on three surfaces. It was concluded that the initial lag on all substrates was due to the hydrophobic nature of the substrates. The ability of the cells to recover on the materials was attributed to the degree of heterogeneity of the crystallinity and surface roughness: samples with a roughness of 80 nm were found to support cell proliferation. In addition, the lateral surface features influenced the proliferation of osteoblasts on the PHBV film surface.

Keywords: OSTEOBLAST PROLIFERATION; PHBV; ROUGHNESS; SURFACE CRYSTALLINITY; WETTABILITY

Document Type: Research Article

DOI: http://dx.doi.org/10.1163/156856207781554046

Affiliations: 1: Nanotechnology and Biomaterials Centre, The University of Queensland, Brisbane, Queensland, 4072 Australia 2: Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072 Australia 3: Department of Orthopaedic Surgery, National University of Singapore, Singapore 117597; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 4: Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 5: School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia 6: School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland, 4072 Australia

Publication date: September 1, 2007

tandf/bsp/2007/00000018/00000009/art00001
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more