Skip to main content

Polycarbonate-urethane hard segment type influences esterase substrate specificity for human-macrophage-mediated biodegradation

Buy Article:

$55.00 plus tax (Refund Policy)

Previous studies have shown that esterase activity can degrade a variety of polyurethanes (PUs), including polycarbonate-based PUs (PCNUs). When cultured on PCNUs, differing in their chemistries, monocyte-derived macrophages (MDM) synthesized and secreted different amounts of both cholesterol esterase (CE) and monocyte-specific esterase (MSE). MDM were seeded on PCNUs synthesized with hexane diisocyanate (HDI) or 4,4′-methylene-bis-phenyl diisocyanate (MDI), PCN and [14C]butanediol (BD) in the ratio 3:2:1 (referred to as HDI321 or MDI321). The effect of phenylmethylsulfonyl fluoride (PMSF, a serine esterase and proteinase inhibitor), sodium fluoride (NaF, a MSE inhibitor) and sodium taurocholate (NaT, a CE stimulator) was assessed on degradation (measured by radiolabel release (RR)) and esterase activity in MDM lysate. The results were compared to the effect that these reagents had on commercially available CE and carboxyl esterase (CXE), which has a specificity similar to MSE. NaF inhibited CXE- and MDM-mediated RR to the same extent as for both PCNUs. However, the MDM-mediated RR from MDI321 was 1.8-times higher than HDI321 in the presence of NaT (P = 0.005). This study suggests that the difference in diisocyanate chemistry may dictate the relative contribution of each esterase to a specific material's degradation. This may be related to both the substrate specificity of each esterase, as well as by the relative amount of each esterase that the specific biomaterial substrates induce the cells to synthesize and secrete.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 September 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more