Skip to main content

Mechanisms of Carbon Sequestration in Soil Aggregates

Buy Article:

$55.00 plus tax (Refund Policy)

Soil and crop management practices have a profound impact on carbon (C) sequestration, but the mechanisms of interaction between soil structure and soil organic C (SOC) dynamics are not well understood. Understanding how an aggregate stores and protects SOC is essential to developing proper management practices to enhance SOC sequestration. The objectives of this article are to: (1) describe the importance of plants and soil functions on SOC sequestration, (2) review the mechanisms of SOC sequestration within aggregates under different vegetation and soil management practices, (3) explain methods of assessing distribution of SOC within aggregates, and (4) identify knowledge gaps with regards to SOC and soil structural dynamics. The quality and quantity of plant residues define the amount of organic matter and thus the SOC pool in aggregates. The nature of plant debris (C:N ratio, lignin content, and phenolic compound content) affects the rate of SOC sequestration. Mechanisms of interaction of aggregate dynamics with SOC are complex and embrace a range of spatial and temporal processes within macro- (>250μm e.c.d.) and microaggregates (<250μm e.c.d.). A relevant mechanism for SOC sequestration within aggregates is the confinement of plant debris in the core of the microaggregates. The C-rich young plant residues form and stabilize macroaggregates, whereas the old organic C is occluded in the microaggregates. Interactions of clay minerals with C rich humic compounds in correlation with clay mineralogy determine the protection and storage of SOC. Principal techniques used to assess the C distribution in aggregates include the determination of total organic C in different aggregate size fractions, isotopic methods to assess the turnover and storage of organic C in aggregates, and computed tomography and X-ray scattering to determine the internal porosity and inter-aggregate attributes. The literature is replete with studies on soil and crop management influences on total organic C and soil aggregation. However, research reports on the interactions of SOC within aggregates for C sequestration are scanty. Questions still remain on how SOC interacts physically and chemically with aggregates, and research is needed to understand the mechanisms responsible for the dynamics of aggregate formation and stability in relation to C sequestration.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: clay minerals; isotopic methods; macroaggregates; microaggregates; organic binding agents; residence time; soil organic carbon sequestration; soil structure; tillage

Document Type: Research Article

Affiliations: Carbon Management and Sequestration Center, The Ohio State University, 412C Kottman Hall, Columbus, OH, USA

Publication date: 2004-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more