Skip to main content

A Robust Solution to the Stereo-Vision-Based Simultaneous Localization and Mapping Problem with Steady and Moving Landmarks

Buy Article:

$59.35 plus tax (Refund Policy)

Abstract:

The problem of visual simultaneous localization and mapping (SLAM) is examined in this paper using recently developed ideas and algorithms from modern robust control and estimation theory. A nonlinear model for a stereo-vision-based sensor is derived that leads to nonlinear measurements of the landmark coordinates along with optical flow-based measurements of the relative robot–landmark velocity. Using a novel analytical measurement transformation, the nonlinear SLAM problem is converted into the linear domain and solved using a robust linear filter. Actually, the linear filter is guaranteed stable and the SLAM state estimation error is bounded within an ellipsoidal set. A mathematically rigorous stability proof is given that holds true even when the landmarks move in accordance with an unknown control input. No similar results are available for the commonly employed extended Kalman filter, which is known to exhibit divergence and inconsistency characteristics in practice. A number of illustrative examples are given using both simulated and real vision data that further validate the proposed method.

Keywords: ROBUST FILTERING; ROBUST STATE ESTIMATION; STABLE SLAM; VISUAL SLAM

Document Type: Research Article

DOI: http://dx.doi.org/10.1163/016918611X563292

Affiliations: 1: School of Engineering and IT, Deakin University, VIC 3217, Australia;, Email: pubudu@deakin.edu.au 2: School of Engineering Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia 3: School of Engineering and IT, Deakin University, VIC 3217, Australia

Publication date: January 1, 2011

tandf/arb/2011/00000025/F0020006/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more