If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Genetic Programming-Based Automatic Gait Generation in Joint Space for a Quadruped Robot

$61.74 plus tax (Refund Policy)

Buy Article:


This paper introduces a new approach to developing a fast gait for a quadruped robot using genetic programming (GP). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multi-dimensional space. Several recent approaches have focused on using genetic algorithms (GAs) to generate gaits automatically and have shown significant improvement over previous gait optimization results. Most current GA-based approaches optimize only a small, pre-selected set of parameters, but it is difficult to decide which parameters should be included in the optimization to get the best results. Moreover, the number of pre-selected parameters is at least 10, so it can be relatively difficult to optimize them, given their high degree of interdependence. To overcome these problems of the typical GA-based approach, we have proposed a seemingly more efficient approach that optimizes joint trajectories instead of locus-related parameters in Cartesian space, using GP. Our GP-based method has obtained much-improved results over the GA-based approaches tested in experiments on the Sony AIBO ERS-7 in the Webots environment. The elite archive mechanism is introduced to combat the premature convergence problems in GP and has shown better results than a traditional multi-population approach.


Document Type: Research Article

DOI: http://dx.doi.org/10.1163/016918610X534312

Affiliations: 1: Department of Electronics Engineering, Seokyeong University, Jungneung-Dong 16-1, Sungbuk-Gu, Seoul 136-704, South Korea 2: Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

Publication date: November 1, 2010

Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more