Efficient Behavior Learning Based on State Value Estimation of Self and Others

$61.20 plus tax (Refund Policy)

Buy Article:


The existing reinforcement learning methods have been seriously suffering from the curse of the dimension problem, especially when they are applied to multiagent dynamic environments. One of the typical examples is a case of RoboCup competitions since other agents and their behavior easily cause state and action space variations. This paper presents a method of modular learning in a multiagent environment by which the learning agent can acquire cooperative behavior with its teammates and competitive behavior against its opponents. The key ideas to resolve the issue are as follows. First, a two-layer hierarchical system with multilearning modules is adopted to reduce the size of the sensor and action spaces. The state space of the top layer consists of the state values from the lower level and the macro actions are used to reduce the size of the physical action space. Second, the state of the other, to what extent it is close to its own goal, is estimated by observation and used as a state variable in the top layer state space to realize the cooperative/competitive behavior. The method is applied to a four (defense team)-on-five (offense team) game task and the learning agent (a passer of the offense team) successfully acquired the teamwork plays (pass and shoot) within much shorter learning time.


Document Type: Research Article

DOI: http://dx.doi.org/10.1163/156855308X344882

Affiliations: Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

Publication date: October 1, 2008

Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more