If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Gaussian mixture-sound field landmark model for robot localization applications

$61.74 plus tax (Refund Policy)

Buy Article:

Abstract:

This work proposes a novel Gaussian mixture-sound field landmark model for localization applications, based on the principle that sound fields produced by sources at different locations can be distinguished in terms of their statistical patterns. The experimental results indicate that two microphones are sufficient to differentiate among the patterns. The proposed method is robust against environmental noise and performs accurately in a complex environment. Moreover, it cannot only detect the non-line-of-sight locations when the direct path between the microphones and the location is blocked, but also can distinguish the locations aligned with respect to the line connecting the microphones. However, using only two microphones, these scenarios are difficult to handle by traditional direction-of-arrival or beamforming methods in microphone array research. The experiments were conducted on a quadruped robot platform with an eRobot agent using embedded Ethernet technology. Because of its high accuracy and low-cost, this method is suitable for robot localization in real environments. The experimental results also show that the proposed method with only two microphones outperforms the conventional multiple signal classification method (MUSIC) technique with six microphones at various signal-to-noise ratios.

Keywords: GAUSIAN MIXTURE MODEL; LOCALIZATION; ROBOT; SOUND FIELD LANDMARK

Document Type: Research Article

DOI: http://dx.doi.org/10.1163/156855307780108259

Affiliations: Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan

Publication date: May 1, 2007

Related content

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more