Skip to main content

Motion planning of manipulators regarding structural safety as a prior condition

Buy Article:

$55.00 plus tax (Refund Policy)

In this paper, a motion-planning scheme that enables manipulators to avoid structural damage is described. Using this scheme, manipulators are encouraged to protect themselves from structural damage by searching for a safer attitude when their structural risk becomes high during their given tasks. The structural risk is determined by using two parameters, i.e., the resultant forces and total strain energy stored in the architecture, which are calculated by the finite element method. Three schemes of motion planning that use the structural parameters are compared by carrying out numerical tests with structurally severe tasks. Furthermore, the proposed strategy is implemented in the interface of a robotic arm to verify its validity. The experimental results revealed the practicability of the scheme in avoiding structural damage to the constituent members.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Affiliations: 1: Department of Engineering Mechanics and Energy, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan 2: Kawasaki Heavy Industries, Ltd, 4-1, Hamamatsu-cho, 2-chome, Minato-ku, Tokyo 105-6116, Japan

Publication date: 2007-05-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more