Skip to main content

Synthesis on forward kinematics problem algebraic modeling for the planar parallel manipulator: displacement-based equation systems

Buy Article:

$60.90 plus tax (Refund Policy)

Abstract:

Based on a proven exact method which solves the forward kinematics problem (FKP) this article investigates the FKP formulation specifically applied to planar parallel manipulators. It focuses on the displacement-based equation systems. The majority of planar tripods can modeled by the 3-RPR parallel manipulator, which is a tripod constituted by a fixed base and a triangular mobile platform attached to three kinematics chains with linear (prismatic) actuators located between two revolute joints. In order to implement the algebraic method, the parallel manipulator kinematics are formulated as polynomial equation systems where the number of equations is equal to or exceeds the number of unknowns. Three geometrical formulations are derived to model the difficult FKP. The selected proven algebraic method uses Gröbner bases from which it constructs an equivalent univariate system. Then, the real roots are isolated using this last system. Each real solution exactly corresponds to one manipulator assembly mode, which is also called a manipulator posture. The FKP resolution of the planar 3-RPR parallel manipulator outputs six complex solutions which become a proven real solution number upper bound. In several typical examples, the resolution performances (computation times and memory usage) are given. It is then possible to compare the models and to reject one. Moreover, a number of real solutions are obtained and the corresponding postures drawn. The algebraic method is exact and produces certified results.

Keywords: CERTIFIED RESULTS; DISPLACEMENT-BASED MODELS; EXACT ALGEBRAIC METHOD; FORWARD KINEMATICS; PARALLEL PLANAR MANIPULATOR; REAL ROOT ISOLATION

Document Type: Research Article

DOI: http://dx.doi.org/10.1163/156855306778394003

Publication date: September 1, 2006

tandf/arb/2006/00000020/00000009/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more