Skip to main content

Discrete Optimization for Vibration Design of Composite Plates by Using Lamination Parameters

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

A design method is proposed to optimize the stacking sequence of laminated composite plates for desired vibration characteristics. The objective functions are the natural frequencies of the laminated plates, and three types of optimization problems are studied where the fundamental frequency and the difference of two adjacent frequencies are maximized, and the difference between the target and actual frequencies is minimized. The design variables are a set of discrete values of fiber orientation angles with prescribed increment in the layers of the plates. The four lamination parameters are used to describe the bending property of a symmetrically laminated plate, and are optimized by a gradient method in the first stage. A new technique is introduced in the second stage to convert from the optimum four lamination parameters into the stacking sequence that is composed of the optimum fiber orientation angles of all the layers. Plates are divided into sub-domains composed of the small number of layers and designed sequentially from outer domains. For each domain, the optimum angles are determined by minimizing the errors between the optimum lamination parameters obtained in the first step and the parameters for all possible discrete stacking sequence designs. It is shown in numerical examples that this design method can provide with accurate optimum solutions for the stacking sequence of vibrating composite plates with various boundary conditions.

Keywords: COMPOSITE; LAMINATED PLATE; LAMINATION PARAMETER; LAYERWISE OPTIMIZATION; NATURAL FREQUENCY; OPTIMIZATION; VIBRATION

Document Type: Research Article

DOI: https://doi.org/10.1163/156855109X434739

Affiliations: 1: Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan;, Email: honda-shi@mech-me.eng.hokudai.ac.jp 2: Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Publication date: 2009-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more