Skip to main content

Fatigue crack propagation in short and long glass fiber reinforced injection-molded polypropylene composites

Buy Article:

$63.00 plus tax (Refund Policy)

Fatigue crack propagation (FCP) in unfilled and short (SGF) and long glass fiber (LGF) reinforced injection-molded polypropylene (PP) composites was studied on notched compact tension (CT) specimens in tension-tension mode. In the FCP response, a fatigue crack deceleration stage (range I) and an acceleration stage (range II) could be distinguished. The former was explained by the development and 'stabilization' of the damage zone. The latter range could be adequately described by the Paris-Erdogan power law. Increasing fiber loading resulted in improved resistance against FCP. Incorporation of longer fibers yielded an even higher FCP resistance. The use of LGF reinforcement also resulted in a quasi-isotropic FCP behavior, whereas a clear dependance of the propagation rate on crack direction could be observed for SGF-filled composites. All these differences could be interpreted by differences in microstructural parameters of the LGF in comparison to the SGF systems. Failure processes were studied by light and and scanning electron microscopy, and are discussed. Increased matrix ductility at higher FCP rates and corresponding changes in the fiber-related events, especially in fiber pull-out length, were attributed to crack tip heating effects.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: composite; failure; fatigue crack growth; glass fiber reinforcement; injection-molding; polypropylene homopolymer; thermoplastic matrix composite

Document Type: Research Article

Affiliations: 1: Institute for Composite Materials, The University of Kaiserslautern, D-6750 Kaiserslautern, PO Box 3049, Germany 2: Advanced Material Group, Imperial Chemical Industries, Wilton Centre, Cleveland TS6 8JE, UK

Publication date: 1991-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more