Skip to main content

The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract:

The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.

Keywords: ARCHAEA; BACTERIA; DNA-BINDING DOMAIN; GENOMICS; PARTNER DOMAIN; REGULATORY NETWORKS; TRANSCRIPTION FACTORS

Document Type: Review Article

DOI: http://dx.doi.org/10.3184/003685012X13420097673409

Publication date: September 1, 2012

More about this publication?
  • SCIENCE PROGRESS has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field. Science Progress commissions world authorities to contribute articles on the most interesting, important and meaningful topics - ranging from cosmology to the environment - and ensures that they are presented for the most effective use of those in both academia and industry.

    Truly, Science Progress publishes an eclectic mix of articles that no library can afford to be without.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
stl/sciprg/2012/00000095/00000003/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more