Skip to main content

Current molecular techniques for the detection of microbial pathogens

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract:

Traditionally the detection of microbial pathogens in clinical, environmental or food samples has commonly needed the prelevation of cells by culture before the application of the detection strategy. This is done to increase cell number thereby overcoming problems associated with the sensitivity of classical detection strategies. However, culture-based methods have the disadvantages of taking longer, usually are more complex and require skilled personnel as well as not being able to detect viable but non cultivable microbial species. A number of molecular methods have been developed in the last 10 to 15 years to overcome these issues and to facilitate the rapid, accurate, sensitive and cost effective identification and enumeration of microorganisms which are designed to replace and/or support classical approaches to microbial detection. Amongst these new methods, ones based on the polymerase chain reaction and nucleic acid hybridization have been shown to be particularly suitable for this purpose. This review generally summarizes some of the current and emerging nucleic acid based molecular approaches for the detection, discrimination and quantification of microbes in environmental, food and clinical samples and includes reference to the recently developing areas of microfluidics and nanotechnology ``Lab-on-a-chip''.

Keywords: cell culture; microbial pathogens; molecular detection of microbes

Document Type: Research Article

DOI: https://doi.org/10.3184/003685007780440521

Affiliations: Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK

Publication date: 2007-03-31

More about this publication?
  • SCIENCE PROGRESS has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field. Science Progress commissions world authorities to contribute articles on the most interesting, important and meaningful topics - ranging from cosmology to the environment - and ensures that they are presented for the most effective use of those in both academia and industry.

    Truly, Science Progress publishes an eclectic mix of articles that no library can afford to be without.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more