Skip to main content

Spatial Distribution of Electrons with High Energy in Atmospheric Pressure Glow Discharge Excited by DC Voltage

Buy Article:

$28.00 + tax (Refund Policy)

Atmospheric pressure glow discharge excited by a DC voltage was realized in a 6 mm air gap by using a needle-water electrode discharge device. The atompheric pressure glow discharge has characteristic regions such as a cathode fall, a negative glow, a Faraday dark space, a positive column and an anode glow. The discharge is a normal glow through analyzing its voltage-current curve. The emission intensity of 337.1 nm spectral line from the second positive system of N2 was investigated because it can indicate the electron density with high energy. Results show that the maxima of high energy electrons appears in the vicinity of the needle tip, and it almost remains constant at other locations. The density of high energy electrons decreases with increasing the voltage. Similarly, it decreases with increasing the value of the ballast resistor. Oxygen atom is important for the sterilization and disinfection. The distribution of oxygen atom was also investigated by optical emission spectroscopy. It was found that the oxygen distribution is similar with the distribution of high energy electrons. These results are important for the application of atmospheric pressure glow discharge in environmental protection and biological treatment.

Keywords: Atmospheric pressure glow discharge; Emission spectrum; High energy electron; Oxygen atom; Spatial distribution

Document Type: Research Article

Publication date: 15 September 2013

More about this publication?
  • Spectroscopy and Spectral Analysis, founded in 1981, is sponsored by the Chinese Central Iron & Steel Research Institute. "Spectroscopy and Spectral Analysis" has been indexed in SCI(1999), Ei(1992), MEDLINE(1999), and AJ (1999). "Spectroscopy and Spectral Analysis" publishes original contributions on various fields in Spectroscopy, including research results on laser spectroscopy, IR, Ramn, UV/Vis, Optical Emission, Absorption and Fluorescence spectroscopy, X-ray Fluorescence, and Spectrochemical Analysis, as well as Reseach paper, Research notes, Experimental Technique and Instrument, Review and Progress on the latest development of spectroscopy and spectrochemical anlysis, etc. "Spectroscopy and Spectral Analysis" is published monthly by Peking University Press with book sizes of large 16-mo format , and 292 pages per issue.
  • Editorial Board
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content