Skip to main content

Investigation of the Vibrational Temperature and Gas Temperature in Gas Discharge Generated by Plasma Needle

Buy Article:

$28.00 + tax (Refund Policy)

Low temperature plasma generated by plasma needle in atmospheric pressure air has extensive application prospects in industry because the vacuum device can be dispensable. In the present paper a stable plasma plume was generated in air by using a plasma needle device. The vibrational temperature and gas temperature were investigated for the plasma plume by optical spectroscopic method. Research results show that the plasma plume generated in atmospheric pressure air can be distinguished as a strong emission area near the needle followed by a weak emission area. The light emission signal from the discharge is a pulse per half cycle of the applied voltage with a time width of several microseconds. Results also indicate that the vabrational temperature varies from 2 500 to 3 000 K for different emission locations. The vibrational temperature increases with increasing the distance from the needle point in the strong emission area and it reaches a peak value at a distance of about 5mm from the needle point. The vibrational temperature decreases with increasing the distance from the needle. Similarly, the gas temperature decreases from 640K to 540K with increasing the distance from the needle point. These results are of great importance for the industrial applications of air discharge at atmospheric pressure.

Keywords: Gas temperature; Light emission signal; Optical emission spectroscopy; Plasma needle; Vibrational temperature

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Spectroscopy and Spectral Analysis, founded in 1981, is sponsored by the Chinese Central Iron & Steel Research Institute. "Spectroscopy and Spectral Analysis" has been indexed in SCI(1999), Ei(1992), MEDLINE(1999), and AJ (1999). "Spectroscopy and Spectral Analysis" publishes original contributions on various fields in Spectroscopy, including research results on laser spectroscopy, IR, Ramn, UV/Vis, Optical Emission, Absorption and Fluorescence spectroscopy, X-ray Fluorescence, and Spectrochemical Analysis, as well as Reseach paper, Research notes, Experimental Technique and Instrument, Review and Progress on the latest development of spectroscopy and spectrochemical anlysis, etc. "Spectroscopy and Spectral Analysis" is published monthly by Peking University Press with book sizes of large 16-mo format , and 292 pages per issue.
  • Editorial Board
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content