Skip to main content

Controllable Synthesis and UV-Vis Spectral Analysis of Silver Nanoparticles in AOT Microemulsion

Buy Article:

$28.00 + tax (Refund Policy)

Colloidal silver nanoparticles were synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of a microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another one as reducing agent, cyclohexane as the continuous phase, and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The main factors affecting the formation of silver nanoparticles were systematically studied. Ultraviolet-visible (UV-Vis) spectra were used for analyzing the effects of reaction parameters, including the type of reducing agents, the molar ratio of water to surfactant and the concentration of AgNO3 and AOT and so on, on the formation of silver nanoparticles. Original results for the controllable synthesis of silver nanoparticles were obtained when the synthesis proceeded in AOT-cyclohexane-AgNO3 microemulsion. The UV-Vis spectra of silver sols formed in the microemulsion with various parameters were studied systematically. The results show that the amount and average size of the obtained nanoparticles obviously depend on the above parameters. When the concentration of AgNO3 is lower, smaller silver nanoparticles are easy to form by increasing the concentration of AgNO3 appropriately. The higher W value was found to form larger numbers of silver nanoparticles with larger particle size. Compared to the solubility of NaBH4 in AOT reverse micelles, hydrazine hydrate is well soluble in these micelles, and thus it is favorable to reduce the silver ions solubilized in the water core of AOT-cyclohexane-AgNO3 microemulsion. The increase in the concentration of AOT induces an increase in the number of AOT micelles and a decrease in the molar ratio of water to surfactant. As a result, the solubilization capacity of reactants in the micelles increases and the radii of the micelles decrease. That is to say, with the increase in AOT concentration, the amount of the formed nanoparticles increases and the average size of the particles decreases.

Keywords: AOT-based microemulsion; Controllable synthesis; Nanosilver; UV-Vis spectra

Document Type: Research Article

Publication date: 01 March 2009

More about this publication?
  • Spectroscopy and Spectral Analysis, founded in 1981, is sponsored by the Chinese Central Iron & Steel Research Institute. "Spectroscopy and Spectral Analysis" has been indexed in SCI(1999), Ei(1992), MEDLINE(1999), and AJ (1999). "Spectroscopy and Spectral Analysis" publishes original contributions on various fields in Spectroscopy, including research results on laser spectroscopy, IR, Ramn, UV/Vis, Optical Emission, Absorption and Fluorescence spectroscopy, X-ray Fluorescence, and Spectrochemical Analysis, as well as Reseach paper, Research notes, Experimental Technique and Instrument, Review and Progress on the latest development of spectroscopy and spectrochemical anlysis, etc. "Spectroscopy and Spectral Analysis" is published monthly by Peking University Press with book sizes of large 16-mo format , and 292 pages per issue.
  • Editorial Board
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content