Skip to main content

Gap Effect on Performance of Podded Propulsors in Straight-Ahead and Azimuthing Conditions

Buy Article:

$40.00 plus tax (Refund Policy)

Abstract:

This paper presents results of an experimental study on the effect of gap distance on propulsive characteristics of puller and pusher podded propulsors in straight-ahead and static azimuthing open-water conditions. The gap distance is the axial distance between the rotating (propeller) and stationary (pod) parts of a podded propulsor. The propeller thrust and torque, unit forces, and moments in the three-coordinate directions of a model podded unit were measured using a custom-designed pod dynamometer in various operating conditions. The model propulsor was tested at the gap distances of 0.3%, 1%, and 2% of propeller diameter for a range of advance coefficients combined with the range of static azimuthing angles from +20° to 20° with a 10° increment. The tests were conducted both in puller and pusher configurations in the same loading and azimuthing conditions. In the puller configuration, the gap distance did not have any noticeable effect on propeller torque in straight course condition, but had an effect in azimuthing conditions. The propeller thrust and efficiency were also influenced by the change of gap distance, and the effects were more pronounced at high azimuthing angles and high advance coefficients. For pusher configuration, however, the gap distance did not affect the propeller performance characteristics in straight-ahead and azimuthing conditions. Both in straight course and azimuthing conditions, the unit thrust and efficiency were not influenced by the gap distance in either puller or pusher configurations. The gap distance had a noticeable effect on unit transverse force and steering moment both in puller and pusher configurations, and both in straight course and azimuthing conditions. An uncertainty estimate of the measurements is provided at the end.

Keywords: ELECTRIC PROPULSION; MODEL TESTING; PODDED PROPULSION; PROPELLERS

Document Type: Research Article

Publication date: January 1, 2010

More about this publication?
  • Marine Technology is dedicated to James Kennedy, 1867-1936, marine engineer, and longtime member of the Society, in recognition and appreciation of his sincere and generous interest in furthering the art of ship design, shipbuilding, ship operation, and related activities.

    The Technical papers in this quarterly flagship journal cover a broad spectrum of research on the latest technological breakthroughs, trends, concepts, and discoveries in the marine industry. SNAME News is packed with Society news and information on national, section, and local levels as well as updates on committee activities, meetings, seminars, professional conferences, and employment opportunities.

    For access to Volume 47 Issue 2 and later, please contact SNAME
  • Information for Authors
  • Membership Information
  • Volume 47 Issue 2 and later
  • ingentaconnect is not responsible for the content or availability of external websites
sname/mt/2010/00000047/00000001/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more