Skip to main content

Dynamic Modeling of Gas Turbine Rotor Shaft Faults

Buy Article:

$40.00 plus tax (Refund Policy)

Abstract:

Most imminent faults in gas turbines often emanate from the rotor shaft of the engine. Some of these faults that could lead to catastrophe include misalignment, imbalance, crack, and eccentricity. These defects are equally likely to lead to unscheduled downtime resulting in large economic losses to equipment owners. It is against this backdrop that the rotor shaft of a gas turbine system was isolated and used for this dynamic model to reduce downtime. A method of dynamic modeling was used to consider how the aforementioned faults could be addressed at the design stage of the gas turbine engine. Modeling and simulation of the faults were carried out, and the obtained results compared favorably with what theory suggests. It was observed that cracking, as the most prominent rotor shaft fault, could manifest even at a turbine speed of 7,264 rpm (0.18 m for 0.8776 mm/s vibration velocity amplitude). Artificial neural networks (ANN) were then used to validate and link the results together, which also confirmed the authenticity of the work. Also, a Visual Basic program was used in the course of the various simulations adopted for the modeling, with faults being randomized every 3000 ms, and outputs were easily displayed on desktop computer screen. The work therefore showed how an ANN could be integrated into the monitoring of gas turbine rotor shaft defects. In its totality, the monitoring technique metamorphosed into the development of a software code-named "The MICE" for monitoring essential performance parameters in gas turbine operations.

Keywords: GAS TURBINES; MACHINERY (PERFORMANCE DATA); MAINTENANCE; MODEL TESTING; SHAFTING; VIBRATIONS

Document Type: Research Article

Publication date: 2009-07-01

More about this publication?
  • Marine Technology is dedicated to James Kennedy, 1867-1936, marine engineer, and longtime member of the Society, in recognition and appreciation of his sincere and generous interest in furthering the art of ship design, shipbuilding, ship operation, and related activities.

    The Technical papers in this quarterly flagship journal cover a broad spectrum of research on the latest technological breakthroughs, trends, concepts, and discoveries in the marine industry. SNAME News is packed with Society news and information on national, section, and local levels as well as updates on committee activities, meetings, seminars, professional conferences, and employment opportunities.

    For access to Volume 47 Issue 2 and later, please contact SNAME
  • Information for Authors
  • Membership Information
  • Volume 47 Issue 2 and later
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more