Development of a Marine Propeller With Nonplanar Lifting Surfaces

Authors: Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.; Lundegaard, Lars; Patience, Graham

Source: Marine Technology, Volume 42, Number 3, July 2005 , pp. 144-158(15)

Publisher: Society of Naval Architects and Marine Engineers (SNAME)

Buy & download fulltext article:

OR

Price: $40.00 plus tax (Refund Policy)

Abstract:

The principle of nonplanar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt with in this paper, has led to the KAPPEL propeller with blades curved toward the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental, and practical approach to develop and design marine propellers with nonplanar lifting surfaces has resulted in propellers with higher efficiency and lower levels of noise and vibration excitation compared to conventional state-of-the-art propellers designed for the same task. Conventional and KAPPEL propellers have been compared for a medium-sized containership and a product tanker. In total, nine KAPPEL propellers and two conventional propellers have been designed, and models of all propellers have been examined with respect to cavitation and efficiency in the open-water and behind conditions. Casting procedures, measurement procedures, and stress analysis methods for the unconventional geometry of the KAPPEL propeller have been developed. Furthermore, the KAPPEL propeller has been applied in full scale to the product carrier investigated. Sea trials with the conventional propeller and the KAPPEL propeller have been performed and have proved an efficiency gain of 4% in favor of the new propeller. The improved efficiency was obtained at lower propeller-induced pressure fluctuations. The correlation between the theoretical, experimental, and full-scale results is discussed.

Document Type: Research Article

Publication date: July 1, 2005

More about this publication?
  • Marine Technology is dedicated to James Kennedy, 1867-1936, marine engineer, and longtime member of the Society, in recognition and appreciation of his sincere and generous interest in furthering the art of ship design, shipbuilding, ship operation, and related activities.

    The Technical papers in this quarterly flagship journal cover a broad spectrum of research on the latest technological breakthroughs, trends, concepts, and discoveries in the marine industry. SNAME News is packed with Society news and information on national, section, and local levels as well as updates on committee activities, meetings, seminars, professional conferences, and employment opportunities.

    For access to Volume 47 Issue 2 and later, please contact SNAME
  • Information for Authors
  • Membership Information
  • Volume 47 Issue 2 and later
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page