If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Critical Needs for Ship Maneuverability: Lessons From the Houston Ship Channel Full-Scale Maneuvering Trials

$40.00 plus tax (Refund Policy)

Buy Article:


The Standards for Ship Maneuverability approved by the International Maritime Organization (IMO) in 2002 represent a significant step forward in ensuring adequate maneuverability of ships. The Standards provide numerical criteria for assessing the adequacy of maneuverability in deep, unrestricted water at sea speed. Explanatory notes to the Standards provide useful guidelines to the assessment and validation process that help with various issues, such as adjusting full-scale trial results for environmental and loading conditions. Major issues exist, however. In question is the ability of the standards to ensure adequate maneuverability in shallow, restricted, and congested waterways under vessel meeting and passing conditions with the interaction effects, bank suction, and other situations that are encountered in normal port, harbor, and waterway operations. Historically, even in shallow water that is unrestricted, only a couple of ship trials have ever been conducted due to the great cost to prepare for such tests. The lack of accurate full-scale data has seriously limited the accuracy capable of being built into mathematical prediction models. Recently, however, revolutionary positioning technology has enabled collecting highly accurate track and vertical position data on ships operating in shallow and restricted water, with and without interacting ship traffic. Accurate mathematical modeling of ship operations in complex harbors and waterways has become a critical need, and now the possibility of advancing the science finally exists. With accurate full-scale trials data and improved prediction techniques, such as computational fluid dynamics, such ability now seems attainable.

Document Type: Research Article

Publication date: January 1, 2005

More about this publication?
  • Marine Technology is dedicated to James Kennedy, 1867-1936, marine engineer, and longtime member of the Society, in recognition and appreciation of his sincere and generous interest in furthering the art of ship design, shipbuilding, ship operation, and related activities.

    The Technical papers in this quarterly flagship journal cover a broad spectrum of research on the latest technological breakthroughs, trends, concepts, and discoveries in the marine industry. SNAME News is packed with Society news and information on national, section, and local levels as well as updates on committee activities, meetings, seminars, professional conferences, and employment opportunities.

    For access to Volume 47 Issue 2 and later, please contact SNAME
  • Information for Authors
  • Membership Information
  • Volume 47 Issue 2 and later
  • ingentaconnect is not responsible for the content or availability of external websites



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more