Skip to main content

Considerations in the Design of the Primary Treatment for Ballast Systems

Buy Article:

$40.00 plus tax (Refund Policy)

Investigations are currently underway to establish effective primary and secondary ballast water treatment methods to minimize the potential for the introduction of additional nonindigenous aquatic species into the Great Lakes and other U.S. coastal waters. This treatment could be used in place of mid-ocean ballast exchange currently required by the U.S. Coast Guard for all vessels entering the Great Lakes in ballast from beyond the Exclusive Economic Zone (EEZ). Primary and secondary treatment could provide environmental protection for both Ballast On Board (BOB) vessels, which are required to perform mid-ocean ballast exchange before entering the Great Lakes, and No Ballast On Board (NOBOB) vessels, which are currently exempt from any ballast exchange requirements. Primary treatment using some form of mechanical separation to 100 µm or 50 µm followed by secondary treatment using 254 nm UV irradiation or some form of chemical treatment are currently leading candidates. Over the past six years, the Great Lakes Ballast Technology Demonstration Project (GLBTDP) has undertaken the full-scale evaluation of 340 m3/h (1500 U.S. gpm) ballast water mechanical separation using an automatic backwashing screen filter, hydrocyclone, and automatic backwashing disk filter. This experience provides the basis for the investigation of various ballast system design issues that must be considered in the selection and design of the primary ballast water treatment. This investigation is based upon the ballast system of a typical Seaway size bulk carrier using port and starboard 2000 m3/h (8800 U.S. gpm) main ballast pumps. A discrete multicriterion optimization tradeoff study using the Analytical Hierarchy Process (AHP) is also presented to illustrate a rational method for determining the best choice for primary ballast water treatment for such a Seaway size bulk carrier.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2003-01-01

More about this publication?
  • Marine Technology is dedicated to James Kennedy, 1867-1936, marine engineer, and longtime member of the Society, in recognition and appreciation of his sincere and generous interest in furthering the art of ship design, shipbuilding, ship operation, and related activities.

    The Technical papers in this quarterly flagship journal cover a broad spectrum of research on the latest technological breakthroughs, trends, concepts, and discoveries in the marine industry. SNAME News is packed with Society news and information on national, section, and local levels as well as updates on committee activities, meetings, seminars, professional conferences, and employment opportunities.

    For access to Volume 47 Issue 2 and later, please contact SNAME
  • Information for Authors
  • Membership Information
  • Volume 47 Issue 2 and later
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more