Skip to main content

Enzymatic Hydrolysis of Sugarcane Biomass and Heat Integration as Enhancers of Ethanol Production

Buy Article:

$29.95 plus tax (Refund Policy)

The aim of this study is to assess the possibility of increasing ethanol production by introducing the bagasse hydrolysis process into conventional distilleries. Simulations were performed for mass and energy balances using Aspen Plus® software. It was assumed that sugarcane trash and lignin cake—hydrolysis process residues—are available as supplementary fuel. Several cases were evaluated, including: (a) conventional ethanol distillery, (b) conventional plant combined with a hydrolysis process without heat integration, with different solid contents in the hydrolysis reactor, and (c) conventional plant combined with the hydrolysis process applying heat integration by pinch analysis. The highest ethanol yield was achieved in the case of heat integration and concentration of cellulose hydrolysate by the membrane system with a solid content of 5% in the hydrolysis reactor. This represents an increase of 22% over conventional distilleries currently found in the industry.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ENZYMATIC HYDROLYSIS; ETHANOL; HEAT INTEGRATION; SUGARCANE

Document Type: Research Article

Publication date: 01 March 2018

This article was made available online on 11 November 2017 as a Fast Track article with title: "Enzymatic Hydrolysis of Sugarcane Biomass and Heat Integration as Enhancers of Ethanol Production".

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more