Skip to main content

Durability of Thermally Modified Wood of Gmelina arborea and Tectona grandis Tested under Field and Accelerated Conditions

Buy Article:

$29.95 plus tax (Refund Policy)

This study evaluated the durability in terms of decay and mechanical resistance of thermally modified (TM) wood of Tectona grandis and Gmelina arborea treated at 160, 180, 200 and 220 °C. The TM wood of both species treated above 200 °C and 180 °C respectively presents lower weight loss (WL) after 300 days exposure in field and accelerated testing. It was also found that in field testing over 180 °C, the module of elasticity (MOE) and module of rupture (MOR) of the exposed and unexposed stakes of TM wood were not affected. Accelerated tests showed that the loss in flexural resistance was reflected more in the MOR than in the MOE. Finally, the accelerated and field tests showed that G. arborea and T. grandis TM wood treated at 180, 200 and 220 °C present statistically similar values of WL and flexural mechanical resistance.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 July 2017

This article was made available online on 28 March 2017 as a Fast Track article with title: "Durability of Thermally Modified Wood of Gmelina arborea and Tectona grandis Tested under Field and Accelerated Conditions".

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more