Skip to main content

Open Access Biodegradability of Polyethylene/Hydrolyzed Collagen Blends in Terrestrial and Marine Environmental Conditions

Download Article:
 Download
(PDF 1,097.5 kb)
 
In this study, blends of low-density polyethylene (PE) containing 20 wt% of hydrolyzed collagen (HC) from the leather industry were processed by the film blowing technique. A biodegradation study of these innovative materials was performed by two different biodegradation tests, one in terrestrial environment, the other one under aquatic conditions. Degradation rates were determined for both systems and an environmental degradability parameter was calculated. The results proved the positive influence of hydrolyzed collagen on degradation of polyethylene, but also showed a relatively low biological degradability of PE/HC blends under the applied test conditions.

17 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: BIODEGRADABILITY; HYDROLYZED COLLAGEN; POLYETHYLENE

Document Type: Research Article

Publication date: 01 January 2017

This article was made available online on 15 May 2017 as a Fast Track article with title: "Biodegradability of Polyethylene/Hydrolyzed Collagen Blends in Terrestrial and Marine Environmental Conditions".

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more