Skip to main content

Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid)

Buy Article:

$29.95 plus tax (Refund Policy)

Cellulose nanocrystals (CNCs) are renewable and sustainable filler for polymeric nanocomposites. However, their high hydrophilicity limits their use with hydrophobic polymer for composite materials. In this study, freeze-dried CNCs were modified by transesterification with canola oil fatty acid methyl ester to reduce the hydrophilicity. The transesterified CNCs (CNCFE) were compounded with PLA into nanocomposites. CNCFE with long-chain hydrocarbons plays a role as plasticizer. Increasing CNCFE loadings resulted in clear plasticizing effects. Lower Tg and Tm were achieved for CNCFE-based nanocomposites. Plasticizing nanocomposite melt with CNCFE can mitigate the degradation of CNCs during thermal processing. The elongation at break of nanocomposites containing 5% CNCFE was increased. Dynamic rheological study showed the highest elastic and viscous moduli (G') and G") and complex viscosity (G*) of nanocomposites with addition of 2% CNCFE. By tailoring the loadings of the transesterified CNCs, tunable structure and properties of nanocomposites can be obtained.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: CHARACTERIZATION; MODIFICATION; NANOCELLULOSE; NANOCOMPOSITES

Document Type: Research Article

Publication date: 2017-10-01

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more