Skip to main content

Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol

Buy Article:

$29.95 plus tax (Refund Policy)

Mixtures of biomass-derived polyols were used to synthesize rigid polyurethane (PU) foams. A commercial polymerized methylene diphenyl diisocyanate (pMDI) was used as crosslinker, and distilled water served as foaming agent. The morphology and mechanical properties of foams with different glycerol and water contents were compared in order to evaluate the most suitable formulations. The rigid foams with higher water contents had larger and more anisotropic cells, explaining their lower density. Compressive moduli ranged from about 2.5 MPa to above 20 MPa and collapse stresses from 55 kPa to more than 1 MPa for densities between 54 and 143 kg/m3. Densification strain did not depend on the density or on the composition of the polymeric matrix. Moreover, results shown herein demonstrate that an increase in the glycerol content leads to an increase in the required pMDI for the synthesis of the PU, but with a negligible change in the mechanical properties of the prepared foams.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: GLYCEROL; HYDROXYLATED SOYBEAN OIL; MECHANICAL PROPERTIES; MORPHOLOGY; POLYURETHANE FOAMS

Document Type: Research Article

Publication date: 01 August 2016

This article was made available online on 20 July 2016 as a Fast Track article with title: "Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol".

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more