Skip to main content

Solid "Green" Polyurethanes Based on Rapeseed Oil Polyol and Modified with Glycerol and Microcellulose

Buy Article:

$29.95 plus tax (Refund Policy)

Solid biobased polyurethanes (PUs) were prepared from a rapeseed oil-based polyol (ROPO) synthesized by epoxidation reaction followed by oxirane ring-opening with diethylene glycol. The reference material was modified by replacement of the ROPO with glycerol in different proportions and also by addition of commercial microcellulose (MC). The curing process of the reactive mixtures was monitored by rheological measurements and the analysis showed that both MC and glycerol increase the time of crossover between storage and loss modulus (liquid to solid transition in the response at 1 Hz). The completely cured polyurethanes were characterized by physical, morphological and mechanical analysis. The results proved that the addition of glycerol and MC increases the modulus and ultimate stress. Despite the higher modulus of the composites, the ultimate deformation also increases with the incorporation of 3 and 5 wt% of MC, which was associated with the good interaction between the cellulose and its polymer matrix.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: BIOBASED POLYURETHANES; GLYCEROL; MICROCELLULOSE; RAPESEED OIL POLYOL

Document Type: Research Article

Publication date: 2016-08-01

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more