Skip to main content

New Renewable and Biodegradable Fiberboards from a Coriander Press Cake

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

New fiberboards were manufactured from a coriander cake through thermo-pressing, and the influence of thermo-pressing conditions (temperature, pressure and time) on the boards' mechanical properties, their thickness swelling and their water absorption was evaluated. Because the protein glass transition systematically occurred during molding, this resulted in effective wetting of the fibers. Consequently, all boards were cohesive, with proteins and fibers acting as binder and reinforcing fillers, respectively. Flexural properties were influenced by all tested conditions, and the optimal board was molded at 200 °C temperature, 36.8 MPa pressure and 180 s time. Its flexural strength at break and its elastic modulus were 11.3 MPa and 2.6 GPa, respectively, with the highest surface hardness of the entire study. Simultaneously, thickness swelling and water absorption were low: 51% and 33%, respectively. This board would be applicable as pallet interlayer sheeting for the manufacture of containers or furniture or in the building trade.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: CORIANDER PRESS CAKE; FIBERBOARD; LIGNOCELLULOSIC FIBERS; PROTEINS; THERMO-PRESSING

Document Type: Research Article

Publication date: 07 June 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more