Skip to main content

Kinetics of the Demineralization Reaction of Deproteinized Lobster Shells Using CO2

Buy Article:

$29.95 plus tax (Refund Policy)

The demineralization kinetics of deproteinized lobster shells using CO2 were studied. Demineralization reaction proceeds until the concentration of Ca+2 in solution reaches an equilibrium value. The introduction of a cation exchange resin (cationite), in an open system for CO2, allows replacement of the solution Ca2+ ions by Na+ ions, whereby the equilibrium shifts and an effective dissolution of the exoskeletons' calcite is achieved. The mathematical relationships between the conductivity of the solution and the concentrations of major ions, the rate constants and kinetic parameters of the reaction in the absence and presence of the resin were obtained. It was found that the reaction follows pseudo-first-order kinetics, and the experimental results were in good agreement with the proposed mathematical model.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: CARBON DIOXIDE; CHITIN; DEMINERALIZATION; LOBSTER SHELLS

Document Type: Research Article

Publication date: 2015-03-01

More about this publication?
  • The Journal of Renewable Materials (JRM) publishes high quality peer reviewed original research on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. It showcases both fundamental aspects and new applications for renewable materials. The fundamental theories and topics pertain to chemistry of biobased monomers, macromoners and polymers, their structure-property relationship, processing using sustainable methods, characterization (spectroscopic, morphological, thermal, mechanical, and rheological), bio and environmental degradation, and life cycle analysis. Demonstration of use of renewable materials and composites in applications including adhesives, bio and environmentally degradable structures, biomedicine, construction, electrical & electronics, mechanical, mendable and self-healing systems, optics, packaging, recycling, shape-memory, and stimulus responsive systems will be presented.
  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more