Skip to main content

Open Access Regression-based air temperature spatial prediction models: an example from Poland

Download Article:
 Download
(PDF 948.01171875 kb)
 

Abstract:

A Geographically Weighted Regression – Kriging (GWRK) algorithm, based on the local Geographically Weighted Regression (GWR), is applied for spatial prediction of air temperature in Poland. Hengl's decision tree for selecting a suitable prediction model is extended for varying spatial relationships between the air temperature and environmental predictors with an assumption of existing environmental dependence of analyzed temperature variables. The procedure includes the potential choice of a local GWR instead of the global Multiple Linear Regression (MLR) method for modeling the deterministic part of spatial variation, which is usual in the standard regression (residual) kriging model (MLRK). The analysis encompassed: testing for environmental correlation, selecting an appropriate regression model, testing for spatial autocorrelation of the residual component, and validating the prediction accuracy. The proposed approach was performed for 69 air temperature cases, with time aggregation ranging from daily to annual average air temperatures. The results show that, irrespective of the level of data aggregation, the spatial distribution of temperature is better fitted by local models, and hence is the reason for choosing a GWR instead of the MLR for all variables analyzed. Additionally, in most cases (78%) there is spatial autocorrelation in the residuals of the deterministic part, which suggests that the GWR model should be extended by ordinary kriging of residuals to the GWRK form. The decision tree used in this paper can be considered as universal as it encompasses either spatially varying relationships of modeled and explanatory variables or random process that can be modeled by a stochastic extension of the regression model (residual kriging). Moreover, for all cases analyzed, the selection of a method based on the local regression model (GWRK or GWR) does not depend on the data aggregation level, showing the potential versatility of the technique.

Keywords: AIR TEMPERATURE; GEOGRAPHICALLY WEIGHTED REGRESSION KRIGING; POLAND

Document Type: Research Article

DOI: https://doi.org/10.1127/0941-2948/2013/0440

Publication date: 2013-10-01

More about this publication?
  • Meteorologische Zeitschrift (originally founded in 1866) is the joint periodical of the meteorological societies of Austria, Germany and Switzerland. It accepts high-quality peer-reviewed manuscripts on all aspects of observational, theoretical and computational research out of the entire field of meteorology, including climatology. Meteorologische Zeitschrift represents a natural forum for the meteorological community of Central Europe and worldwide.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more