If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Open Access Small scale topography influence on the formation of three convective systems observed during COPS over the Vosges Mountains

(PDF 2,198kb)
Download Article:


Numerical modelling of the airflow and precipitating convective systems are performed to better understand the role of topography for the triggering of convection over a moderate mountain region during the Convective and Orographically induced Precipitation Study (COPS) campaign. A non-hydrostatic cloud scale model with two nested domains is used which permits to zoom from the mesoscale environment of south-western Germany/eastern France, into the Vosges Mountains and finally into the small-terrain of the field experiment, increasing the grid resolution to well represent the orography of the region. Using radar observations, a classification of the location of the convection initiation was established during the COPS project, which considers that the convective systems form either on the mountain ridges or on the lee side of the massif. The three simulated cases of this study, corresponding to either position of convection initiation, compare well with available observations of local thermo-dynamical conditions, high resolution X-band radar reflectivity, Vienna Enhanced Resolution Analysis (VERA) of the surface horizontal wind and water vapour retrieval through GPS integrated water vapour 3D tomography. It was found that the convection generation is largely influenced by the Vosges topography. Even for a quite similar synoptic horizontal wind field, the relief acts differently for the studied cases. However, the convective systems are not formed solely by the mountains, but require inputs of moisture, proper stability, and some supportive mesoscale environment. Therefore, their representation in the model requires also a detailed knowledge of the local atmospheric conditions.


Document Type: Research Article

DOI: http://dx.doi.org/10.1127/0941-2948/2013/0402

Publication date: August 1, 2013

More about this publication?
  • Meteorologische Zeitschrift (originally founded in 1866) is the joint periodical of the meteorological societies of Austria, Germany and Switzerland. It accepts high-quality peer-reviewed manuscripts on all aspects of observational, theoretical and computational research out of the entire field of meteorology, including climatology. Meteorologische Zeitschrift represents a natural forum for the meteorological community of Central Europe and worldwide.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more