Open Access Extreme Climate in China: Facts, Simulation and Projection

 Download
(PDF 1,024.5 kb)
 
Download Article:

Abstract:

In this paper, studies on extreme climate in China including extreme temperature and precipitation, dust weather activity, tropical cyclone activity, intense snowfall and cold surge activity, floods, and droughts are reviewed based on the peer-reviewed publications in recent decades. The review is focused first on the climatological features, variability, and trends in the past half century and then on simulations and projections based on global and regional climate models. As the annual mean surface air temperature (SAT) increased throughout China, heat wave intensity and frequency overall increased in the past half century, with a large rate after the 1980s. The daily or yearly minimum SAT increased more significantly than the mean or maximum SAT. The long-term change in precipitation is predominantly characterized by the so-called southern flood and northern drought pattern in eastern China and by the overall increase over Northwest China. The interdecadal variation of monsoon, represented by the monsoon weakening in the end of 1970s, is largely responsible for this change in mean precipitation. Precipitation-related extreme events (e.g., heavy rainfall and intense snowfall) have become more frequent and intense generally over China in the recent years, with large spatial features. Dust weather activity, however, has become less frequent over northern China in the recent years, as result of weakened cold surge activity, reinforced precipitation, and improved vegetation condition. State-of-the-art climate models are capable of reproducing some features of the mean climate and extreme climate events. However, discrepancies among models in simulating and projecting the mean and extreme climate are also demonstrated by many recent studies. Regional models with higher resolutions often perform better than global models. To predict and project climate variations and extremes, many new approaches and schemes based on dynamical models, statistical methods, or their combinations have been developed, resulting in improved skills. With the improvements of climate model capability and resolution as well as our understanding of regional climate variability and extremes, these new approaches and techniques are expected to further improve the prediction and projection on regional climate variability and extremes over China in the future.

Document Type: Research Article

DOI: http://dx.doi.org/10.1127/0941-2948/2012/0330

Publication date: June 1, 2012

More about this publication?
  • Meteorologische Zeitschrift (originally founded in 1866) is the joint periodical of the meteorological societies of Austria, Germany and Switzerland. It accepts high-quality peer-reviewed manuscripts on all aspects of observational, theoretical and computational research out of the entire field of meteorology, including climatology. Meteorologische Zeitschrift represents a natural forum for the meteorological community of Central Europe and worldwide.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more