Skip to main content

An ensemble Kalman-Bucy filter for continuous data assimilation

Buy Article:

$39.00 plus tax (Refund Policy)

Abstract:

The ensemble Kalman filter has emerged as a promising filter algorithm for nonlinear differential equations subject to intermittent observations. In this paper, we extend the well-known Kalman-Bucy filter for linear differential equations subject to continous observations to the ensemble setting and nonlinear differential equations. The proposed filter is called the ensemble Kalman-Bucy filter and its performance is demonstrated for a simple mechanical model (Langevin dynamics) subject to incremental observations of its velocity.

Document Type: Research Article

DOI: https://doi.org/10.1127/0941-2948/2012/0307

Publication date: 2012-06-01

More about this publication?
  • Meteorologische Zeitschrift (originally founded in 1866) is the joint periodical of the meteorological societies of Austria, Germany and Switzerland. It accepts high-quality peer-reviewed manuscripts on all aspects of observational, theoretical and computational research out of the entire field of meteorology, including climatology. Meteorologische Zeitschrift represents a natural forum for the meteorological community of Central Europe and worldwide.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more