Skip to main content

Open Access Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought

Download Article:
 Download
(PDF 687.5810546875 kb)
 
Whether fish biomanipulation is an efficient restoration technique in eutrophic warm sub/tropical lakes has been subject to recent debate. Our investigations undertaken in warm Lake Eymir, Turkey show that fish removal increased water clarity during a five-year period. Rapid re-colonisation of submerged plants, Potamogeton pectinatus and Ceratophyllum demersum, occurred. This recovery was achieved at higher total phosphorus (TP) levels than the suggested threshold for stability, probably owing to the nitrogen-limited condition of the lake. Reestablishment of vegetation coincided with significantly reduced concentrations of TP and dissolved inorganic nitrogen (DIN). Abundance of the large-bodied Daphnia pulex was low and it later disappeared completely from the zooplankton community, probably due to increased fish predation. A severe drought, occurring two years after the fish removal, significantly lowered the water level, increased the hydraulic residence time and caused an expansion of the vegetation. The drought was also associated with a significant increase in salinity, conductivity, nutrient concentrations (TP and DIN) and in the abundance of Arctodiaptomus bacillifer. The in-lake nutrient amounts became more dependent on internal processes rather than on the external loading, which was very low during the drought period. When the water level rose to normal values, the concentrations of TP and soluble reactive phosphate (SRP) decreased. However, the DIN concentration significantly increased due to slowed denitrification processes in consequence of the low availability of dissolved oxygen. This increase in ammonium concentrations may have contributed to the instability of clear-water conditions by releasing the lake from its former nitrogen-limited state, since the TP levels in the lake had already surpassed critical levels. Along with this, tench (Tinca tinca) biomass increased to pre-biomanipulation levels and the pike (Esox lucius) to planktivorous fish ratio decreased with increased chlorophyll-a concentrations, largely by inedible cyanobacteria, which led to a decline in summer water clarity but not to disappearance of submerged plants. The early growth of plants was probably controlled by the spring water clarity, which remained high, and the lake maintained its macrophyte-dominated state, despite the relatively turbid conditions prevailing in summer. The highly positive effect of the Lake Eymir restoration effort contradicts the experiences from other subtropical lakes. This could be due to the fact that warm Lake Eymir being at high latitude with a strong presence of predatory fish and limited abundance of planktivorous fish species, as opposed to low altitude warm lakes. However, drought as an inherent feature of the arid region may be even more important in the future as drier conditions are predicted for the Mediterranean region in consequence of the global climate change.

35 References.

No Supplementary Data.
No Data/Media
No Metrics

Keywords: CLIMATE CHANGE; CYANOBACTERIA; EUTROPHICATION; NITROGEN; SALINITY; SUBMERGED PLANTS; WATER-LEVEL FLUCTUATION

Document Type: Research Article

Publication date: 2008-03-01

More about this publication?
  • Fundamental and Applied Limnology is an international journal for freshwater research in the widest sense, including problems of marine biology and brackish water research. Papers dealing with ecological topics are especially welcome in association with experimental or physiological studies. All papers published in this journal are subject to peer review.

    Archiv für Hydrobiologie, now Fundamental and Applied Limnology has been published continuously since 1906.

    Volumes prior to vol. 168 were published under the previous title Archiv für Hydrobiologie.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more