Skip to main content

Slip systems and plastic shear anisotropy in Mg2SiO4 ringwoodite: insights from numerical modelling

Buy Article:

$30.00 plus tax (Refund Policy)

Knowledge on the deformation mechanisms of Mg2SiO4 ringwoodite is important for the understanding of flow and seismic anisotropy in the Earth's mantle transition zone. We report here the first numerical modelling of dislocation structures in ringwoodite. The dislocation properties are calculated through the Peierls-Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principle calculations using the code VASP. They enable us to determine the relative ease of slip for dislocation glide systems in ringwoodite. The dislocation properties such as core spreading and Peierls stresses were determined for the easy dislocation glide systems. Our results show that ½<110> {110} and ½<110> {111} are the easiest slip systems in ringwoodite at 20 GPa and 0 K. These results are used as input of a viscoplastic model to predict the deformation of a ringwoodite rich aggregate. Calculated crystal preferred orientation (CPO) accounts satisfactorily for experimental data available from either diamond anvil cell or D-DIA experiments.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: DEFORMATION MECHANISMS; DISLOCATIONS; EARTH MANTLE TRANSITION ZONE; FIRST-PRINCIPLE CALCULATIONS; PEIERLS-NABARRO MODEL; RINGWOODITE; SEISMIC ANISOTROPY; SLIP SYSTEMS

Document Type: Research Article

Publication date: 2006-03-01

More about this publication?
  • The European Journal of Mineralogy publishes original papers, review articles and letters dealing with the mineralogical sciences s.l. These include primarily mineralogy, petrology, geochemistry, crystallography and ore deposits, as well as environmental, applied and technical mineralogy. Nevertheless, papers in any related field, including cultural heritage, will be considered.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more