If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Open Access Millimeter-Scale Mapping of Cortical Bone Reveals Organ-Scale Heterogeneity

 Download
(HTML 41.8kb)
 
or
 Download
(PDF 549.7kb)
 
Download Article:

Abstract:

Raman spectroscopy was used to show that across 10 cm of diaphyseal (mid-shaft) cortical bone the phosphate-to-amide I ratio (a measure of the mineral to collagen ratio) can vary by as much as 8%, and the phosphate-to-carbonate ratio (a measure of carbonate inclusion in mineral crystals) by as much as 5%. The data are preliminary but are important because they reveal a spatial variation at a scale that is much larger than many of the spectral maps reported in the literature to date. Thus they illustrate natural variation in chemical composition that could have been overlooked in such studies or could have appeared as an undue error where the overall composition of the bone was investigated. Quantifying the variation in mid-shaft cortical bone at the millimeter/centimeter scale reduces the possibility of natural heterogeneity obscuring the average bone composition, or being mistaken for experimental signal, and results in an improvement in the sampling accuracy analogous to that obtained by switching from micrometer-size point spectra of bones to spectral images obtained across hundreds of micrometers. Although the study was carried out using Raman spectroscopy, the underlying cause of the variation is ascribed to the variation of the chemical composition of the bone; therefore the findings have direct implications for other chemically specific analytical methods such as Fourier transform infrared spectroscopy or nuclear magnetic resonance spectroscopy.

Keywords: Bone; Bone heterogeneity; Mineralization; Raman spectroscopy

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/13-07296

Affiliations: Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford OX11 0FA, UK

Publication date: April 1, 2014

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more