Open Access Quantum Dots in Bioanalysis: A Review of Applications Across Various Platforms for Fluorescence Spectroscopy and Imaging

 Download
(HTML 284.1kb)
 
or
 Download
(PDF 7,157.8kb)
 
Download Article:

Abstract:

Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Förster resonance energy transfer‐type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.

Keywords: Assay; Flow cytometry; Fluorescence; Förster resonance energy transfer (FRET); Imaging; Microscopy; Multiplexing; Quantum dot; Single molecule; Spectroscopy

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/12-06948

Affiliations: Department Of Chemistry, University Of British Columbia, 2036 Main Mall, Vancouver, Bc V6t 1z1, Canada

Publication date: March 1, 2013

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more