Skip to main content

Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX

Buy Article:

$29.00 plus tax (Refund Policy)


We measured the dispersion of the absolute-differential Raman cross-sections of ammonium nitrate (NH4NO3), pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), nitroamine (HMX), and cyclotrimethylene-trinitramine (RDX) in acetonitrile and water solutions between 204 and 257 nm. The ultraviolet (UV) resonance Raman/differential Raman cross-sections of NH4NO3, PETN, TNT, HMX, and RDX dramatically increase as the excitation wavelength decreases deep into the UV to 204 nm. NH4NO3, PETN, and RDX are best resonance-enhanced by the 204 nm excitation used here, while the optimum excitation wavelength for TNT and HMX is ∼230 nm. The excitation profile of TNT roughly follows its absorption band shape. The excitation profiles for the different Raman bands of each explosive molecule differ, indicating that multiple-excitation wavelength spectra are not redundant and can offer additional information on the species present. We see no evidence of any nonlinear spectral response or sample degradation at the fluences and spectral accumulation times used here. However, we previously observed such phenomena at longer spectral accumulation times and higher fluences. These results are promising for the development of standoff deep-UV Raman methods for explosive molecule determinations.

Keywords: Energetic materials; Explosives; Raman cross-section; Raman excitation profile; Resonance Raman

Document Type: Research Article


Affiliations: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

Publication date: September 1, 2012

More about this publication?

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more