Skip to main content

Dynamics Within Site Selectively Templated and Tagged Xerogel Sensor Platforms

Buy Article:

$29.00 plus tax (Refund Policy)

Abstract:

In a nitrobenzo-2-oxa-1,3-diazole (NBD) –based, 9-anthrol-responsive site selectively templated and tagged xerogel (SSTTX) sensor platform, there are two reporter molecule site types (responsive and non-responsive) that are responsible for the observed fluorescence signals. These NBD sites function independently. Site 1 alone binds the target analyte and yields an analyte-dependent signal. This signal arises from analyte binding decreasing the photo-induced electron transfer (PET) efficiency between a strategically placed amine residue and the excited NBD reporter molecule within the template site. Site 2 does not respond to analyte, it is not fully formed, and it manifests itself as a background signal. In an n-octyl residue-free SSTTX, the local microviscosity sensed by the site 1 NBD reporter molecules in the absence and presence of target analyte is ∼260 cP and ∼540 cP, respectively. These local microviscosity values are substantially greater in comparison to free NBD dissolved in THF (η = 0.46 cP at 298 K, ϕ ∼25 ps). As the SSTTX n-octyl content is increased, the local microviscosity sensed by the site 1 NBD reporter molecules in the absence and presence of target analyte is ∼360 cP and ∼760 cP, respectively. This behavior is consistent with the n-octyl chains crowding the cybotactic region surrounding the site 1 NBD reporter molecules. This n-octyl-induced site 1 "crowding" is also associated with improved analyte binding to site 1 and better overall SSTTX analytical performance.

Keywords: ANISOTROPY DECAYS; FLUORESCENCE; MOLECULAR IMPRINTING; PHOTOPHYSICS; SENSORS

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370210792973569

Affiliations: 1: Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA 2: United States Army Research Laboratory, RDRL-SEE-O, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA

Publication date: October 1, 2010

More about this publication?
sas/sas/2010/00000064/00000010/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more