Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Investigation of the Postmortem Metabolic Process in Rat and Human Kidney Cortex

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy has been applied to study the short and long term postmortem metabolic processes in rat and human kidney cortexes. The goals of this project were as follows: (1) to investigate the changes of ATR spectra in different rat and human tissues after death, (2) to explore the best mathematical model with different band absorption ratio changes to determine the postmortem interval (PMI), and (3) to establish a preliminary human postmortem ATR spectra database. There were three different types of metabolic changes after death based on the spectral results: (1) the intensities of some bands increased continuously (e.g., C–H stretching region), (2) the intensities of other bands decreased continuously (e.g., PO 2 symmetric stretching), and (3) other bands remained relatively stable (e.g., C–OH bending, CO–O–C antisymmetric stretching). The band absorbance ratios for rats were found to display either a significant increase or decrease with increasing time after death. Of the absorbance ratios of the various bands investigated to find the best fit with the cubic model function in rats, the A 1652/A 1396 ratio showed the strongest correlation (R 2 = 0.937). Comparison of the rat kidney cortex spectra with selected human postmortem cases showed similar postmortem metabolic changes. In conclusion, ATR FT-IR spectroscopy was shown to be a convenient and reliable method of determining short and long term postmortem intervals by simultaneously monitoring several specific parameters, although these observations have yet to be applied at forensic scenes by further field studies.

Keywords: ATR; ATTENUATED TOTAL REFLECTION; FOURIER TRANSFORM INFRARED SPECTROSCOPY; FT-IR SPECTROSCOPY; KIDNEY CORTEX; MODEL FUNCTIONS; POSTMORTEM INTERVAL

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370210790918382

Affiliations: 1: Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China; Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, 200063, PR China 2: Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China

Publication date: March 1, 2010

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more