Predicting Raman Spectra Using Density Functional Theory

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Accurately computing molecular Raman spectra would enable rapid development of inexpensive and extensive Raman libraries. This is especially beneficial for chemicals that are regulated, toxic, or otherwise difficult to handle. Numerous quantum mechanical methods have been developed that enable computation of Raman spectra. Here, we study the B3LYP exchange correlation functional with various combinations of basis sets, polarization functions, and diffuse functions to determine which combination best computes the Raman spectra for explosive and nonexplosive molecules. In comparing spectra, three metrics were utilized: the root mean square error, the earth mover's distance, and the weighted cross-correlation average. The earth mover's distance and weighted cross-correlation metrics are shown to have significantly greater power at detecting spectral similarities and differences than the root mean square error. Across all methods and molecules examined, B3LYP/6-311++G(d,p) was found to provide the best match between measured and computed Raman spectra. Spectra generated at the B3LYP/6-311++G(d,p) level were found to be accurate enough to correctly identify each molecule out of a set of measured molecular spectra.

Keywords: DENSITY FUNCTIONAL THEORY; DFT; EARTH MOVER'S DISTANCE; EXPLOSIVES; RAMAN SPECTRA PREDICTION; WEIGHTED CROSS-CORRELATION AVERAGE

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370209788700991

Affiliations: The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia 22102

Publication date: July 1, 2009

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more