Mid-Infrared Diffuse Reflectance Spectroscopic Examination of Charred Pine Wood, Bark, Cellulose, and Lignin: Implications for the Quantitative Determination of Charcoal in Soils

Authors: Reeves, James B.1; McCarty, Gregory W.2; Rutherford, David W.3; Wershaw, Robert L.3

Source: Applied Spectroscopy, Volume 62, Issue 2, Pages 32A-72A and 133-257 (February 2008) , pp. 182-189(8)

Publisher: Society for Applied Spectroscopy

Buy & download fulltext article:

OR

Price: $29.00 plus tax (Refund Policy)

Abstract:

Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 °C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined by titration) were determined for 56 different samples (not all samples were charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature, and duration of charring. Despite the wide range of spectral changes seen with the differing materials and length/temperature of charring, partial least squares calibrations for total acids, carboxylic acids, lactones, and phenols were successfully created (coefficient of determination and root mean squared deviation of 0.970 and 0.380; 0.933 and 0.227; 0.976 and 0.120; and 0.982 and 0.101 meq/g, respectively), indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific material or condition of char formation.

Keywords: CHARCOAL; DIFFUSE REFLECTANCE SPECTROSCOPY; DRIFTS; MID-INFRARED SPECTRA; SOILS

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370208783575618

Affiliations: 1: Environmental Management & Byproduct Utilization Laboratory, BARC East, Beltsville, Maryland 20705 2: Hydrology & Remote Sensing Laboratory, BARC West, Beltsville, Maryland 20705 3: U.S. Geological Survey, Lakewood, Colorado 80288

Publication date: February 1, 2008

More about this publication?
Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page