Determination of the Polymorphic Forms of Bicifadine Hydrochloride by Differential Scanning Calorimetry–Thermogravimetric Analysis, X-ray Powder Diffraction, Attenuated Total Reflectance–Infrared Spectroscopy, and Attenuated Total Reflectance–Near-Infrared Spectroscopy

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The pharmaceutical compound bicifadine hydrochloride, which has been found to crystallize in two polymorphic forms, has been characterized by thermal analysis, X-ray powder diffraction (XRPD), infrared (IR) spectroscopy, and near-infrared (NIR) spectroscopy. A series of 22 sample mixtures of polymorph 1 and polymorph 2 were prepared and calibration models for the quantitation of these binary mixtures have been developed for each of the XRPD, attenuated total reflectance (ATR)-IR, and ATR-NIR analytical techniques. The quantitative results were obtained using a partial least squares (PLS) algorithm, which predicted the concentration of polymorph 1 from the XRPD spectra with a root mean standard error of prediction (RMSEP) of 4.4%, from the IR spectra with a RMSEP of 3.8%, and from the NIR spectra with a RMSEP of 1.4%. The studies indicate that when analyses are carried out on equivalent sets of spectra, NIR spectroscopy offers significant advantages in quantitative accuracy as a tool for the determination of polymorphs in the solid state and is also more convenient to use than both the ATR-IR and XRPD methods. Density functional theory (DFT) B3LYP calculations and IR spectral simulation have been used to determine the nature of the vibrational modes that are the most sensitive in the analysis.

Keywords: ATR; ATTENUATED TOTAL REFLECTANCE; DIFFERENTIAL SCANNING CALORIMETRY; INFRARED; IR; MODELING; NEAR INFRARED; NIR; PARTIAL LEAST SQUARES; PLS; POLYMORPHISM; QUANTITATIVE; SIMULATION; SPECTROSCOPY; THERMOGRAVIMETRIC ANALYSIS; X-RAY POWDER DIFFRACTION

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370205774783322

Affiliations: 1: Chemistry Department, National University of Ireland, Galway, Ireland 2: National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland

Publication date: November 1, 2005

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more