Skip to main content

Surface-Enhanced Raman Spectroscopy of Bacteria and Pollen

Buy Article:

$29.00 plus tax (Refund Policy)

Abstract:

A technique for distinguishing biological material based on surface-enhanced Raman scattering (SERS) is reported in this work. Of particular interest is biological material that can be airborne. Silver colloidal particles with diameters in the range 10 to 20 nm and with a characteristic ultraviolet–visible (UV-VIS) absorption band at 400 nm were used to obtain SERS spectra of Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium bacteria and a number of tree and grass pollens (Cupressus arizonica (cypress), Sequoia sempervirens (redwood), Populus deltoides (cottonwood), Poa pratensis (Kentucky bluegrass), and Anthoxanthum odoratum (sweet vernal grass)). While differences in the SERS spectra among the bacteria were small, we found that the pollen spectra we analyzed could readily be distinguished from the bacteria spectra, and there were significant differences between pollen from different families. In order to obtain reproducible results, we studied the parameters controlling the interaction between the analyte and the nanoscale metallic surface. Our results show that the volume ratio of analyte to colloidal particles must be within a narrow range of values to optimize the signal-to-noise ratio of the SERS spectra and minimize the fluorescence from the analyte. Also, we found that the time-dependent behavior of colloidal/bacterial suspensions (or adsorption rate of the silver colloid particles on the bacteria) is strongly dependent on pH, density of bacteria in solution, and even, to some extent, the type of bacteria.

Keywords: BACTERIA; BIO-AEROSOLS; POLLEN; SERS; SURFACE-ENHANCED RAMAN SPECTROSCOPY

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702054615124

Affiliations: Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195-1700; and Department of Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195-1750

Publication date: August 1, 2005

More about this publication?
sas/sas/2005/00000059/00000008/art00014
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more