Skip to main content

Dual Layer and Multilayer Enhancements from Silver Film over Nanostructured Surface-Enhanced Raman Substrates

Buy Article:

$29.00 plus tax (Refund Policy)

Abstract:

Novel dual layer and multilayer silver film over nanostructure (SFON) substrates have been developed that provide surface-enhanced Raman scattering (SERS) signal enhancements of greater than 1000% compared to conventional single layer SFON substrates. These substrates provide signal enhancement factors of 3.8 × 105 and greater for a variety of SERS active analytes. Substrate preparation is accomplished by vapor depositing a thick (∼100 nm) layer of silver on top of an underlying layer of alumina nanopar- ticles, followed by deposition of additional layers of silver with silver oxide layers between them. Unlike previous dual layer silver island based substrates that have been developed, these substrates do not rely on achieving an optimal morphology via deposition of silver. Instead, these substrates rely on the roughness being provided by the original under-layer, providing enhanced substrate homogeneity and more reproducible signals than either silver island substrates or colloidal substrates. In addition, the signal enhancement gives these substrates extended lifetimes compared to conventional single layer SFON substrates. Finally, this study also shows that geometric surface structure and surface roughness factors play little or no role in this enhancement process, allowing for this multilayer fabrication process to be applied to many different types of substrates achieving similar or even greater results.

Keywords: MULTILAYER; SERS; SERS ENHANCEMENT; SILVER FILMS; SILVER OXIDE LAYER; SURFACE-ENHANCED RAMAN SCATTERING

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702053641379

Affiliations: Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250

Publication date: April 1, 2005

More about this publication?
sas/sas/2005/00000059/00000004/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more