Role of the Micro- and Nanostructure in the Performance of Surface-Enhanced Raman Scattering Substrates Assembled from Gold Nanoparticles

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Highly active and stable substrates for surface-enhanced Raman scattering (SERS) can be fabricated by using colloidal crystals to template gold nanoparticles into structured porous films. The structure-dependent performance of these SERS substrates was systematically characterized with cyanide in continuous flow microfluidic chambers. A matrix of experiments was designed to isolate the SERS contributions arising from nano- and microscale porosity, long-range ordering of the micropores, and the thickness of the nanoparticle layer. The SERS results were compared to the substrate structure observed by scanning electron microscopy (SEM) and optical microscopy to correlate substrate structure to SERS performance. The Raman peak intensity was consistently highest for nanoporous substrates with three-dimensionally ordered micropores, and decreases if the micropores are not ordered or not templated. Removing the nanoscale porosity by fusion of the nanoparticles (without removing the large micropores) leads to a drastic plunge in substrate performance. The peak intensity does not strongly correlate to the thickness of the nanoparticle films. The results make possible the efficient controlled fabrication of stable, reproducible, and highly active substrates for SERS based chemical sensors with continuous sampling.

Keywords: COLLOIDAL CRYSTAL TEMPLATING; CYANIDE DETECTION; NANOPARTICLES; STRUCTURED GOLD FILMS; SURFACE-ENHANCED RAMAN SPECTROSCOPY

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702053641559

Affiliations: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695

Publication date: April 1, 2005

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more