If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Characterization of Novel Ag on TiO2 Films for Surface-Enhanced Raman Scattering

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Novel Ag on TiO2 films are generated by semiconductor photocatalysis and characterized by ultraviolet–visible (UV/Vis) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), as well as assessed for surface-enhanced Raman scattering (SERS) activity. The nature and thickness of the photodeposited Ag, and thus the degree of SERS activity, is controlled by the time of exposure of the TiO2 film to UV light. All such films exhibit the optical characteristics (λmax ≅ 390 nm) of small (< 20 nm) Ag particles, although this feature becomes less prominent as the film becomes thicker. The films comprise quite large (> 40 nm) Ag islands that grow and merge with increasing levels of Ag photodeposition. Tested with a benzotriazole dye probe, the films are SERS active, exhibiting activity similar to that of 6-nm-thick vapor-deposited films. The Ag/TiO2 films exhibit a lower residual standard deviation (~ 25%) compared with Ag vapor-deposited films (~ 45%), which is, however, still unacceptable for quantitative work. The sample-to-sample variance could be reduced significantly (< 7%) by spinning the film during the SERS measurement. The Ag/TiO2 films are mechanically robust and resistant to removal and damage by scratching, unlike the Ag vapor-deposited films. The Ag/TiO2 films also exhibit no obvious loss of SERS activity when stored in the dark under otherwise ambient conditions. The possible extension of this simple, effective method of producing Ag films for SERS, to metals other than Ag and to semiconductors other than TiO2, is briefly discussed.

Keywords: PHOTOCATALYSIS; SERS; SILVER; SURFACE-ENHANCED RAMAN SCATTERING

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/0003702041655520

Affiliations: 1: Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K. 2: School of Engineering, Robert Gordon University, Aberdeen, U.K.

Publication date: August 1, 2004

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more