Time-Resolved Luminescence Imaging of Hydrogen Peroxide Using Sensor Membranes in a Microwell Format

$29.00 plus tax (Refund Policy)

Buy Article:


We demonstrate an optical imaging scheme for hydrogen peroxide in a microwell-based format using the europium(III) tetracycline complex as the fluorescent probe, which is incorporated into a polyacrylonitrile-co-polyacrylamide polymer matrix. The resulting sensor membranes are integrated into a 96-microwell plate. Hydrogen peroxide can be visualized by means of time-resolved luminescence lifetime imaging. The imaging system consists of a fast, gated charge-coupled device (CCD) camera and a pulsed array of 96 light emitting diodes (LEDs). Fluorescence lifetime images are acquired in different modes (rapid lifetime determination, RLD, and phase delay rationing, PDR) and compared with conventional intensity-based methods with respect to sensitivity and the dynamic range of the sensor. The lowest limits of detection can be achieved by the RLD method. The response time of the sensor is comparatively high, typically in the range of 10 to 20 minutes, but the response is reversible. The largest signal changes are observed at pH values between 6.5 and 7.5.


Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370203322554554

Publication date: November 1, 2003

More about this publication?
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more