If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Hemoglobin Correction for Near-Infrared pH Determination in Lysed Blood Solutions

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The near-infrared (NIR) measurement of blood pH relies on the spectral signature of histidine residing on the hemoglobin molecule. If the amount of hemoglobin in solution varies, the size of the histidine signal can vary depending on changes in either the pH or hemoglobin concentration. Multivariate calibration models developed using the NIR spectra collected from blood at a single hemoglobin concentration are shown to predict data from different hemoglobin levels with a bias and slope. A simple, scalar path length correction of the spectral data does not correct this problem. However, global partial least-square (PLS) models built with data encompassing a range of hemoglobin concentration have a cross-validated standard error of prediction (CVSEP) similar to the CVSEP of data obtained from a single hemoglobin level. It will be shown that the prediction of pH of an unknown sample using a global PLS model requires that the unknown have a hemoglobin concentration falling within the range encompassed by the global model. An alternative method for correcting the predicted pH for hemoglobin levels is also presented. The alternative method updates the single-hemoglobin-level models with slope and intercept estimates from the pH predictions of data collected at alternate hemoglobin levels. The slope and intercept correction method gave SEP values averaging to 0.034 pH units. Since both methods require some knowledge of the hemoglobin concentration in order for a pH prediction to be made, a model for hemoglobin concentration is developed using spectral data and is used for pH correction.

Keywords: BLOOD PH; HEMOGLOBIN; NEAR-INFRARED SPECTROSCOPY; NIR SPECTROSCOPY

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/00037020360695955

Publication date: September 1, 2003

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more