If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Near-Infrared Spectroscopy: A Tool for Monitoring Submerged Fermentation Processes Using an Immersion Optical-Fiber Probe

$29.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Near-infrared (NIR) spectroscopy has been developed as a noninvasive tool for the direct, real-time monitoring of glucose, lactic acid, acetic acid, and biomass in liquid cultures of microrganisms of the genera Lactobacillus and Staphylococcus. This was achieved employing a steam-sterilizable optical-fiber probe immersed in the culture (In-line Interactance System®). Second-derivative spectra obtained were subjected to partial least-squares (PLS) regression and the results were used to build predictive models for each analyte of interest. Multivariate regression was carried out on two different sets of spectra, namely whole broth minus the spectral subtraction of water, and raw spectra. A comparison of the two models showed that the first cannot be properly applied to real-time monitoring, so this work suggests calibration based on non-difference spectra, demonstrating it to be sufficiently reliable to allow the selective determination of the analytes with satisfactory levels of prediction (standard error of prediction (SEP) < 10%). Direct interfacing of the NIR system to the bioreactor control system allowed the implementation of completely automated monitoring of different cultivation strategies (continuous, repeated batch). The validity of the in-line analyses carried out was found to depend crucially on maintaining constant hydrodynamic conditions of the stirred cultures because both gas flow and stirring speed variations were found to markedly influence the spectral signal.

Keywords: ACETIC ACID; BIOMASS; CULTURE HYDRODYNAMIC; FERMENTATION MONITORING; GLUCOSE; LACTIC ACID; NEAR-INFRARED SPECTROSCOPY; PARTIAL LEAST-SQUARES REGRESSION; PLSR

Document Type: Research Article

DOI: http://dx.doi.org/10.1366/000370203321535024

Affiliations: Department of Chemistry, University of Ferrara, Ferrara, Italy

Publication date: February 1, 2003

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more